Effect of Bioaerosol Capture on SSI Rates

Alp E, Bijl D, Bleichrodt R, Hansson A, Voss A. Surgical smoke and infection control. J. Hosp. Infect. 2006; 62(1): 1-5.

CDC Procedure-associated Module, SSI. Surgical Site Infection (SSI). Available at 10-pcs-ppcm-nhsn-opc.xlsx. Accessed 8 July 2017.

Fernstrom A, Goldblatt M. Aerobiology and its role in the transmission of infectious diseases. J. Pathog. 2013; 6(3): 352-360.

Schultz L. Can efficient smoke evacuation limit aerosolization of bacteria? AORN J. 2015; 102(1): 7-14.

Sonnergren H, Potesie S, Strombeck L, Aldenborg F, Johansson B, Faergemann J. Bacteria aerosol spread and wound bacteria reduction with different methods for wound debridement in an animal model. Acta Derm Venereol. 2015 Mar;95(3):272-7. doi: 10.2340/00015555-1944.

Systems for evacuation of plume generated by medical devices ISO 16571:2014. Published March 15, 2014, Geneva, Switzerland.


Control of Nanoparticle (Smoke) Inhalation

Ball K. Compliance with surgical smoke evacuation guidelines: implications for practice. AORN J. 2010; 92(2): 142-149.

Bigony L. Risks associated with exposure to surgical smoke plume: a review of the literature. AORN J. 2007; 86(6): 1013-1020.

Buzea C, Pacheo II, Robbie K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2007; 2(4): MR17-MR71.

Schultz L An analysis of surgical smoke plume components, capture and evacuation. AORN J. 2014; 99(2): 289-298.

The Joint Commission (TJC) Compliance. Available at Accessed on 17 July 2014.


Surgical Smoke Aerosol Capture

Sharma D, Ye MJ, Campiti VJ, et al. Mitigation of Aerosols Generated During Rhinologic Surgery: A Pandemic-Era Cadaveric Simulation. Otolaryngol Head Neck Surg. Published online Junly 24, 2020. doi:10.1177/0194599820951169

Liu N, Filipp N, Wood KB. The Utility of Local Smoke Evacuation in Reducing Surgical Smoke Exposure in Spine Surgery; A Prospective Self-Controlled Study. The Spine J. 00 2019: 1-8

Wenig BL, Stenson KM, Wenig BM, Tracey D. Effects of plume produced by the ND: Yag laser and electrocautery on the respiratory system. Lasers Surg Med. 1993; 13(2): 242-245.

Beckett WS. Occupational respiratory disease. N Engl J Med. 2000; 342(6): 406-413.

Garden JM, O’Banion MK, Shelnitz LS, et. al. Papilloma virus in the vapor of carbon dioxide laser-treated verrucae. JAMA. 1988; 259(8): 1199-1202.

Gatti JE, Bryant CJ, Noone RB, Murphy 1B. The mutagenicity of electrocautery smoke. Plast Reconstr Surg. 1992; 89(5): 781-784.

Surgical smoke evacuation systems. Health Devices. 1997; 26(4): 132-172.

Fernandes C, Talikwa L. Viewpoint: ExtendEVAC point-of-origin smoke evacuation. Surg Sery Manage. 2000; 6(2): 18-20.

Smith JP, Topmiller R., Shulman S. Factors affecting emission collection by surgical smoke evacuators. Lasers Surg Med. 1990; 10(3): 224-233.

Kuehn TH, Olson BA, Ramsey JW, Rocklage J. Characterization of Effects from Additional Cooking Appliances. Final Report. ASHRAE 2008; 1375-RP.

Wake D, Redmayhe AC, Thorpe A, Gould JR, Brown RC, Crook B. Sizing and filtration of microbiological aerosols. J Aerosol Sci.. 1995 Sep; 26(1): S529-S530.

Kunzli N, Tager IB, Air pollution: From lung to heart. 2005. Swiss Med Wkly. 135: 697-702.

Gates MA, Feskanich D, Speizer FE, Hankinson SE. Operating room nursing and lung cancer risk in a cohort of female registered nurses. 2007;1 Work Environ Health. 33(2): 140-147.

Gilliland FD, Behane K, Rappaport FB, . The effects of ambient air pollution on school absenteeism due to respiratory illnesses. Epidemiology 2001: 12(1): 43-54.

Brown RC, Lockwood AH, Sonowana BR. Neurodegenerative diseases: an overview of environmental health risk factors. 2005; Environ Health Perspect. 2005. 113: 1250-1256


Nanoparticle-Related Documentation

Mostofi R, Wang B, Haghighhat F, Bahloul A, Jamie L. Performance of Mechanical Filters and Respirators for Capturing Nanoparticles — Limitations and Future Direction, Industr. Health 2010; 48:296-304.

Buzea C, Blandino P, Ivan I, Kevin R. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases. 2007;2(4):MR17-MR172.

lwai K, Mizuno S, Miyasaka Y, Mod T. Correlation between suspended particles in the environmental and causes of disease among inhabitants: cross-sectional studies using the vital statistics and air pollution data in Japan. Environ. Res. 2005;99:106-117.

Nemmar A, Hoet PHM, Vanquickenborne B, et. al. Passage of inhaled particles into the blood circulation in humans. Circulation2002;105:411-414.

Bruske-Hohlfeld I, et al. Surgical smoke and ultrafine particles. J. Occup Med. Toxicol.. 2008; 3(3): 31¬36.

Gatti AM, Montanari 5, Monari E, Gambarelli A, Capitani F, Pansini B, Detection of micro- and nano-sized biocompatible particles in the blood. 2004. J Mater Sci Mater Med. 2004. 15: 469-472.

Donaldson R, Stone V, Tran C, Kreyling W, Bonin PJA. Nanotoxicology. 2004. Occup Environ Med. 61: 727-72.